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Waves 

A wave is a periodic disturbance which travels with finite velocity through a medium and 

remains unchanged in type as it travels. Or it is a disturbance which travels through a 

medium, transforms energy from one location to another without transferring matter.  

Waves may be classified as mechanical or electromagnetic waves.  

Mechanical waves require a material medium for their propagation. These include water 

waves, sound waves and waves on stretched strings. 

Electromagnetic waves include radio, infra red, light, Ultraviolet, X-rays, Gamma rays. 

Electromagnetic waves travel in a vacuum.  

If the disturbance of the source of waves is simple harmonic, the displacement in a given 

time varies with distance from the source as shown below. 

 

 

 

 

Amplitude: This is the greatest displacement of any wave particle from its equilibrium 

position. 

Wavelength(λ):the distance between two successive crests or troughs. Or it is the distance 

between two consecutive wave particles in phase. 

Period(T): The time taken for any particle to undergo a complete oscillation. 

Frequency(f): The number of oscillations per second. 

 

Relationship between f and T 

If a wave completes n cycles in time t, then frequency, ).....(.......... i
t

n
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t
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Velocity(v): The distance covered by a wave particle per second. 
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Relationship between v, λ and f 

If a wave of wavelength λ completes n cycles in time t, then frequency 

Total distance covered = nλ 

Speed, 



t

n

t

n

time

cedis
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tan
 

But  f
t

n
  

fv   

Alternatively,  

F a wave covers a distance, λ, the wavelength, then the time taken is T, the period. Hence 

speed , 
T

v


  

But 
T

f
1

 . Hence fv   

 

Types of waves  

Transverse Waves: It is one which propagates by vibrations perpendicular to the direction of 

travel of the wave. Examples include: Water waves, electromagnetic waves and waves of a 

stretched string. 

 

Speed of a transverse waves along a stretched strings 

The speed v of a transverse waves on a stretched string is independent of the amplitude and 

frequency of the wave. It depends on the tension, T in the string and the mass per unit length 

µ. The tension will determine the restoring force on a displaced piece of string and mass per 

unit length will effect its consequent acceleration. 

Using dimension analysis 

yx
kTv  , k is a dimensionless constant. 

   yx
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Equating power, you get 
2

1
,

2

1
 yx  

Hence 2

1

2

1 

 kTv  

Further analysis gives k = 1. 

Hence 


T
v   

 

Longitudinal waves 

The vibrations of the individual particles occur in the same direction as the direction of the 

travel  of the wave. Examples include sound waves and waves in a stretched spring. 

The speed of longitudinal waves is given by 
2
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v  where Y is young’s modulus and ρ is 

the mass density of a solid. 

For fluids, the expansion for the speed of longitudinal wave is given by 
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
  is the adiabatic bulk modulus and ρ is the density of fluid. 

For gases in particular, 
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v Where P is pressure,    is density and γ is the ratio of 

molar heat capacities. 

  

Progressive wave/ traveling waves 

A progressive wave consists of a disturbance moving from a source to the surrounding places 

as a result of which energy is transferred from one point to another. 

Both transverse and longitudinal are progressive waves. The profile of a progressive wave 

moves along the speed of the wave. It repeats itself at equal distances. The repeat distance is 

called the wavelength. 

If one point in the medium in which the profile propagates is taken, the profile is seen to 

repeat itself at equal intervals of time called the period. Vibrations of particles in progressive 
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waves are of the same amplitude and frequency but the phase of the vibration changes for 

different points along the wave. 

Phase difference  

When the crests of two waves of equal wavelength are together, the waves are said to be in 

phase( i.e. they have a phase difference of zero.) 

If a crest and a trough are together, the waves are completely out of phase( i.e. they have a 

phase difference of π radians. 

Suppose the wave moves from left to right and the particles at the origin O vibrate with 

simple harmonic motion. 

 

 

The vibrations of the particle at P a distance x from the origin will be out of phase with 

vibration of the particle at O. 

At a distance λ from O corresponds to a phase difference of 2π. Therefore the phase angle of 

Φ at P is 


 x2
 . 

The displacement of any particle a distance x from O is given by   tay sin . Where 

  is the phase angle. 

Hence 
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
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       



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


x

T

t
ay 2sin  which is the general equation for a progressive wave. 

The quantity 


2
k  is called the wave vector or wave number. 

Hence  kxtay  sin  

The negative sign in the equation indicates that vibrations at a point like P, to the right of O 

will lag behind those at O, for a wave traveling from left to right. 

A wave traveling from the right to the left arrives at O  before O. hence the vibrations at P 

would lead that at O. Hence  kxtay  sin  

Question 
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1.  What is the phase difference between two waves of wavelength 12cm when one leads 

with other by (i) 6cm   (ii) 9cm    (iii) 3cm   (iv) 12cm    (iv) 36cm      (v) 39cm 

In all above use 


 x2
  

2.  The displacement of a particle on a progressive wave is  txy 10025.02sin2    

Where x and y are in cm and t is in seconds. Calculate (i) wavelength (λ = 0.04m) 

  (ii) velocity of propagation of wave. ( v = 4ms
-1

) 

Compare with the general equation of a progressive wave  

3. The  displacement of a given wave traveling in the X – direction at the time t is 











210
2sin

xt
ay  m. Find (i) velocity of the wave 

  (ii) period of the wave. 

4. Find the speed of a compression wave in an iron rod of density 7.7x10
3
kgm

-3
 and whose 

young’s modulus 2x10
11

Pa.   (Use 
2

1


















Y
v )  (v = 5096.5ms

-1
) 

5. A certain string has linear mass density of 0.25kgm
-1

 and is stretched with tension of 25N. 

One end is given a sinusoidal motion with frequency 5Hz and amplitude 0.01m. At the time t 

= 0, the end has zero displacement and is moving in the positive y – direction.  

 a) Find the wave speed, angular frequency, period, wavelength and wave number. 

 b) Write a wave function describing the wave. 

 c) Find the position of the point at  x = 0.5m at the time t = 0.1s. 
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Transmission of energy by a wave. 

In all progressive waves, energy propagates through the medium in the direction in which the 

wave travels. Each particle of the medium has energy of vibration and passes energy onto the 

next particle. In simple harmonic motion, where there is no damping, the energy of vibrating 

particle changes form kinetic energy to potential energy and back, with the total energy, E, 

remaining constant. 

E = maximum kinetic energy 

2

max

2

1
mvE  , but Av 

max
 

Where A is the amplitude of vibration 

Hence 222

max

2

1

2

1
AmmvE   

Also f 2 , where f is frequency of vibration. 

  222222
24

2

1
AfmAfmE    

As a wave passes through a medium, the energy per unit volume of the medium is the energy 

per particle times the number of particles n per unit volume. 

There fore the energy per unit volume 
222

222

2
2

Af
Volume

Afm



   

Where 
Volume

m
  = density of the wave particles. 

Intensity (I) of the wave is the energy transfer per unit time per unit area perpendicular to the 

direction of propagation of the waves.  

   ttimeaarea

Afm

timearea

E
I







222
2 

 

But alvolumem    

Where a is cross section area, l is length. 

ta

Afal
I




222
2 

 

But v
t

l
  

Hence 
222

2 AfvI   

Example 

The speed of sound in air is 330ms
-1

. A source of sound of frequency 300Hz radiates energy 

in all directions at a rate of 10W. Find (i) the intensity of sound at a distance of 20m from the 

source.  
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(ii) the amplitude of sound wave at this distance. 

( density of air at s.t.p = 1.29kgm
-2

) 

 

 

 

 

 

area

power
I   

But area  16002044
22
 r  

2

160

1

1600

10 
 WmI


 

(ii) Intensity 
222

2 AfvI   

Hence 

 
26

23
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2
10621.1

30033029.12160
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2
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1
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






 

A = ………….m 

Principle of Superposition of waves  

The resultant displacement at any point is the sum of the separate displacement s due to the 

two waves. 

Let y1 and y2 represent the displacement of the individual waves in the planes. 

 

When a crest falls on a crest or a trough falls on a trough, the resultant amplitude is double 

the amplitude of one wave.  

When a crest combines with a trough, the resultant amplitude is zero. 

Stationary waves  

Stationary waves are due to superposition of two progressive waves having the same speed 

and frequency and nearly equal amplitude but traveling in opposite directions. 

Consider two waves  where y1 and y2, where  kxtay  sin
1

. Hence  kxtay  sin
2

 

The resultant displacement y = y1 + y2 

      tkxakxtakxtakxtay  sincos2cossin2sinsin   

  tkxay sincos2  = Asinωt 

Where  kxaA cos2  



 8 

The amplitude A is maximum and is equal to 2a at x = 0, x = λ/2, x = λ and so on. These 

points are thus antinodes and hence separation between consecutive antinodes is λ/2. 

The displacement is zero when x = λ/4, x = 3λ/4, x = 5λ/4. and so on. These points are called 

nodes and hence they are midway between consecutive antinodes. 

Note: Within a stationary wave, there is no flow of energy through a medium. 

There is energy of motion between each vibrating segment but this energy is not transferred 

across node and is stationary. 

   Difference between  progressive and stationary waves                        

                       

         

Stationary wave in strings  

Modes of vibration  

The ends of a stretched string are fixed and there fore the ends of the string must 

Be the displacement nodes .if the string is displaced in the middle, a stationary wave is 

formed    

 First Harmonic (fundamental) 

 

 

 

 

 

 

 

The wave  formed  in  this  case  is the  simplest  form  of  vibration and  is called  the  

fundamental  .    

The frequency at which it vibrates is called the fundamental frequency. 

If f is the frequency (Fundamental frequency). Then 











v
f

1
 

Stationary   wave                                          progressive 

All particles between successive nodes, 

have  their  vibration are in phase. 

The phase of vibration of points near each 

other are all different 

 

All points along the wave vibrate with the 

same amplitude.    

 

Each points along the wave has a different 

amplitude i.e. Amplitude = 2acosθ                                                                

2


l  

N  N  A  
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But l2  











l

v
f

2
1

 where v is the speed of the wave. 

 

Second Harmonic (first Overtone).  

When the wave is plucked quarter way from one end, the wave formed is shown below; 

  

 

 

 

If  f2 is the frequency of the wave;  

1

2

2
2

2
2

2

2
f

l

v

l

v

l
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f 









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Third 
 
harmonic (2

nd
overstone)  

 

 

 

 

 

 

 
1

3

3
3

2
3

3
2

f
l

v

l

vv
f 


 

Frequencies which are higher than fundamental frequency are called overtones. 

Waves formed by a stretched string are of the frequencies ..4,32
11,1,1

ffff  

If ,
2

2 n

l
n

n

l
n

 


 

The frequency  fn of the n
th

 harmonic is given by :- 

)........(..........
22

i
l
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n

l

v

n

v
f

n













  but when 

l

v
fn

2
,1

1
   hence  

           
1

nff
n
  

4

5
5


l

l  

2
3


l  

N  N  N  N  A  A  A  
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The frequency of the various overtones is whole number multiples of the fundamental 

frequency. 

Note: An overtone of any frequency above the fundamental frequency. 

A harmonic is an integral value of the fundamental frequency. 

Recall, the speed of the vibrating string is 


T
v   

Where T is the tension in string  

µ is the mass per unit length. 

From eqn.(i) 


T

l

n
f

n

2
  ,  where n = 1, 2, 3, 4, ………. 

 

Examples 

1.A wire of length 400mm and mass 1.2gm is under a tension of 120N. 

 (i) what is the fundamental frequency of vibration. 

(ii) The frequency of the 3
rd

 harmonic  

(i) 


T

l
f

2

1

1
   =  

 
Hz250

10400

102.1

120

104002

1

3

33























 

(ii)    Hzff 75025033
13

  

 

2. The mass of the vibrating length of sonometer wire is 1.20gm and it is found that a note of 

frequency 512 Hz is produced when wire is sounding its  second overtone .If the tension of  

the wire is 100N, calculate the vibrating length of wire.  

 

13
3 ff   

512 = 
1

3 f

l

l

T

l
3

102.1

100

2

3

2

3







 

l = 0.715m 

 

Question 

A plane string 1.5m long is made of steel of density 7.7x10
3
kgm

-3 
and Young’s modulus 2x10

11
NM

-2
. 

It is maintained at a tension which produces an elastic strain of 1% in the string. What is 

the fundamental frequency  of the transverse vibration of the string  
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Experiment verification 


T

l
f 

2

1

1  

These frequency f1of the fundamental mode of vibration is given by 


T

l


2

1
,  it follows that  

(i) 
l

f
1

1
  ( T and µ constant) 

(ii) Tf 
1

( l and µ constant) 

(iii)  


1

1
f ( T and l constant) 

These relationship are sometimes referred to as the laws of vibration of a stretched string. 

They may be verified experimentally by using a son meter describe below: 

  

 

 

 

 

 

 

 

(i)  
l

f
1

1
  

Having select suitable values of T and µ, the movable bridge is adjusted that the vibration 

length l of the wire produced the same note as the tuning fork of known frequency .The 

procedure is repeated using tuning fork of other known frequency without altering T and µ . 

        A graph of  f1   against 
l

1
 is plotted and is linear passing through the origin.  

 

 

 

 

 

 

(ii) Tf 
1

 

With l kept constant at the same suitable value, the mass, m and there fore tension T is 

constant so that when the wire is plucked, it produces the same note as a tuning fork of 

known frequency, f1. The procedure is repeated using tuning forks of other known 

· 

Wire under tension 
Fixed bridge 

Movable 

bridge 

Known  

Mass, m 

Pulley 

f1 

l

1
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frequencies without altering l and µ. A graph of f1 against T  is plotted and is linear, 

passing through the origin. 

 

 

 

 

 

 

 

Hence Tf 
1

 

(iii)  


1

1
f  

The mass per unit length µ is determined by weighing. The length l of the wire is then 

adjusted so that the wire is plugged, it produces the same note as one of the turning forks.  

The procedure is repeated with wires of different masses per unit length, each wire must be 

under the same tension as the first wire and in each case the length is adjusted until the wire 

vibration of the same frequency as the tuning fork that was used of the first
 
wire . 

A graph of  
l

1
    against  



1
   is plotted and is linear through the origin. 

 

 

 

 

 

 

 

The graph shows that 


11


l
  and  since   

l
f

1

1
     hence 



1

1
f . 

     

 

 

 

 

 

 

Longitudinal stationary wave in pipes  

Closed pipes.  

 This consist essentially of a metal pipes closed at one end and the other.  

 open boundary condition.  

l

1
 



1
 

f1 

T  
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 At the closed end, there is a displaced node at the open end here is displaced antinodes The 

allowed oscillation nodes or standing wave patter are:- 

(i) Fundamental note  

 

 

 

 

 

Fundamental frequency, 
l

vv
f

4
1

1



  ……………….(i) 

 

Fundamental lowest frequency (f1)  

  It is obtained when the simplest stationary wave form is obtained  

 

(ii) First overtone (3
rd

harmonic)  

 

 

 

 

 

     
3

4

3
l  

 

Frequency of first overtone 
3

f is given by  











3

4
3

3

l

vv
f


1

3
4

3
4

3
f

l

v

l

v









  

 

 

(iii) Second overtone (5
th

harmonic)  

 

 

 

 

 

N A 

4

1


l  

N A N A 

N A N A 
A N 

4

5
5


l  
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1

5

5
5

4

5

5

4
f

l

v

l

vv
f 












 

 The frequencies obtained with  a closed pipe are f1,3f1, ,5 f1, 7f1 9f1,etc i.e. only odd 

harmonics’ are obtainable . 

 In general ; 
1

4
nf

l

nv
f

n
 , n = 1, 3, 5, 7……… 

Open pipes  

Pipes which are open at both ends.  

 

Boundary conditions  

Antinodes are at both ends  

(i)   fundamental mode . 

 

                                                          

  

 

 

                   
2

1


l               

Fundamental frequency         

l

vv
f

21

1



  

 

 (ii) first overtone  (second harmonic ) 

 

 

 

                                                                   

 

 

  









l

v

l

v

l

vv
f

2
2

2

2

2

2


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2 ff   

Thus frequencies for notes produced by open pipes are ............4,3,2,
1111

ffff  

In general 
1

2
nf

l

nv
fn        ........4,3,2,1n  

A N 
A 

A N A 
A N 

2
l  



 15 

So an open pipe can produce both odd and even harmonic  

 

End correction  

The at the open end of the pipe is free to move and hence the vibration at this end of the 

sounding pipe extend a little into the air outside .  

Antinodes of the stationary were due to any note is in practice a distance  c from the open 

end. The distance  c is known as the end correction.   

 For the closed pipe;- 

 

 

                                                               

 

 

 

  

.
)(4

4

1

1

1

cl

vv
f

cl










 

For open pipe ;- 

Fundamental mode,  

2
2

1


 cl  

Fundamental frequency, 
)21(2

1

1

c

vv
f





 

 

 

 

 

 

 

 

 

 

 

Resonance in pipes. 

Any force oscillating  system (air column, mechanical system ,diving board )gives a 

maximum response when the diving frequency  f, is equal to the natural frequency  fo of the 

forced system  

The system is said resonate when this happens. 

N A 

l c 
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Sketch of response against frequency . 

 

 

 

 

 

 

 

 

 

 

 

Resonance occurs when a particular body or system is set into oscillation at its own natural 

frequency as a result impulses received from other systems vibrating with the same 

frequency .  

If the prongs of a tuning fork are held over the top of the pipe , air inside is set in vibration by 

the periodic force extended on it by the prongs .The vibration are feeble as they are forced 

vibrations and the intensity of the sound is correspondingly small. But when a tuning fork of 

the same frequency as the fundamental frequency of the pipe is held over it , the air inside is 

set into resonance by periodic force and the amplitude of vibration is loud . A loud note of 

the same frequency as the note is heard coming from the pipe . In general, for a tube of 

varing length , resonance is obtained for some lengths where a stationary wave is set up with 

an antinode at one end and node at the closed end . 

 

Measurement of velocity of sound using a resonance tube.  

If a sounding tuning fork is held over the open end of a tube T filled with water, resonance is 

obtained at the same positions as the water level is lowered . The first two resonance length 

are obtained.  The corresponding air column lengths 
1

l  and 
2

l  are measured. 

 

 

 

 

 

 

 

 

 

Response 

Applied frequency fo 

l 

c 
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At  first resonance 
1

ll  . Hence cl 
1

4


……………….(i)  

At second resonance  
2

ll  . Hence cl 
2

4

3
 ……………..(ii)  

 

From equation (i) and (ii)  
12

2 ll   

From fv   

Hence  
12

2 llfv   

 

Examples 

1 A progressive and stationary wave each have a frequency of 240Hz and a speed of 80ms
-1

 

(i) calculate the phase difference between two vibrating points in the progrese wore 

when they are 6 cm apart. 

 

Hzf 240 ,      1
80


 msv  

                  
240

80
f

v
  

 Phase difference 





2
 =

80

2401062
2





 = 36.0  rad. 

 

 

(ii) distance between nodes in the stationary wave . 

m
f

v

3

1

240
80   

Hence distance between nodes = m
6

1

2

1

3

1

2



 

 

1. A plane progressive wave is given by  







 xtay 

9

10
100sin  

(i) Write the equation of a  progressive wave which would give rise to the 

stationary wave if superimposed on the above . 









 xtay 

9

10
100sin  

(ii) Find the equation of the stationary and hence determine the amplitude of 

vibration  









 xtay 

9

10
100sin

1
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







 xtay 

9

10
100sin

2
 

 Using the principle of superposition, resultant displacement 
21

yyy   

Hence 
















 xtaxtay 

9

10
100sin

9

10
100sin  

  







 xtxay 

9

10
cos100sin2  

Hence Amplitude = 







xa 

9

10
cos2  

(i) Determine the velocity and frequency of the stationary wave. 

   f  =



 where 



2
  

 f =  Hz50
2

100

2









 

velocity of the wave            

    

13

3

09.0108.150

108.18.1

2

9

10











msfv

mmm

k










 

4   A glass tube open at the top is held vertically and filled with water. A tuning fork 

vibrating at 264 Hz is held above the table and water is allowed to flow out slowly .The first 

resonance occurs when the water level is 31.5cm from the top while the 2
nd

 resonance occurs 

when the water level is 96.3cm from the top  

         Find;- 

(i)  Speed of sound in the air column. 

At first resonance, cl 
1

4


 

).......(..........315.0
4

ic


 

At second resonance, ).........(963.0
4

3
iic


 



 19 

Equation (ii) – (i) you get  315.0963.0
2




 

  m296.1315.0963.02   

1
144.342296.1264


 msfv   

(ii)  End correction. 

c 315.0
4


 

mc 009.0315.0324.0315.0
4

296.1
315.0

4



 

Exercise  

1.   A stretched wire of length 0.75m, radius 1.36mm and  1380kgm
-3

 is dumped  to both 

sides and is plucked in the middle .The fundamental  note is produced by the wire has the 

same frequency as the first overtone in the pipe of length 0.15m closed at one end . 

(i) Sketch the standing wave pattern in the wire. 

Calculate the tension in the wire  (V  of  sound in air =330MJ )   














I
v  

2.  A  wave of amplitude 0.2m, wave length 2m and frequency 50Hz , propagating in the X-  

direction . If the initial displacement is 0 at pt x = 0. Write the expression of the displacement 

of the wave at any time. 

(1) Find the speed of the wave.  

(b) 2 waves of frequency 256Hz respectively travel with a speed of 340m +6.4a medium. 

Find the phase difference of an amplitude point 2m from where they are initially in phase. 

(ii) Design an experiment to demonstrate that a metal wire under tension can vibrate with 

more than one frequency  

 

3.  Give the factors that affect the frequency of the transverse wave traveling along a and how 

the frequency varies with each factor. 

      (b)A string of strength 31.6cm of fixed at both ends so that it is taut. The lowest 

frequency of the transverse were it can produce is 880Hz .Calculate the speed of wave. 

      (c) A long glass tube is filled with water. A tuning fork is held at the mouth of the tube 

and the tube is gradually emptied. Explain what happens. 
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  4.  A small speaker emitting a note of 250Hz is placed over the open upper end of a vertical 

tube when it is full of water. When the water is gradually run out of the tube, the air when it 

is 0.98m below the top column resonates, initially when the water surface is below 0.310 

below the top. Find V and end correction. 

5.  State the conditions that lead to the establishment of the standing wave. 

    (ii)  A uniform tube 50cm long stands vertically with its lower end dipping into the water. 

The tube resonates to a tuning fork of frequency 256Hz when its length above water is 12cm 

and again when it is 39.6cm. Eliminate the lowest freq. to which the tube resonates when it is 

open at both ends.  

(iii) A wave of mass 1.0x 10
-2

kg and decimeter 6.0x10
-4

m is stretched between rigid 

supports 1.0m apart.  

The tension in the string is 60N. Find the change in the freq. of the fundamental 

rock when the temperature of the wire is lowered by 100K given that the speed 




v  

        Young’s modulus 2.0x10
11

pa.  

         Linear expansion 1.5x10
-6

K
-1.  

                                                Beats 

When two notes with slightly different frequencies but equal amplitude are sounded together 

, they interfere with one  anther , and the resultant effect in the sound where budnen increases 

and decreases periodically i.e maximum sound alternating with minimum sound is high . 

This phenomenon is known as  beats. 

The frequency of beats is the number of intense sounds heard per second. The variations in 

amplitude (and intensity )are called beats. The number of times the sound readies maximum 

intensity per second is called the beat intensity. 

 

The production beats is a wave effect explained by the principle of super position. Beats are 

due to interference in time because the sources are not coherent  ( they are of different 

frequency ), there is sometimes reinforcement  at  a given time and at other times 

cancellation(amplitude is zero), 
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Suppose the beat period  (i.e time between 2  successsive maximum) is T , and that one wave 

train of frequency f1 , makes one cycle more than that of frequency f2.  

Number of cycles of frequency f1, = f1T 

and number of cycles of frequency f2 =f2T 

    






1

1

21

21

ff

ff

                                     

 But f


1
(the beat frequency). 

 Hence fff 
21

 

Uses of beats.  

1.  Beats are used to tune an instrument to a given note. As the instrument note approaches a 

given note, beats are heard. The instrument may be regarded as tuned when beats occur at a 

very slow rate.  

2.   To measure frequency f1 of a given note. A note of known frequency f2 is used to provide 

beats with the unknown note and the frequency f is obtained by counting the number beats 

made in a given time. Hence fff 
21

.  To decide which value of f1 is correct, the end of 

the unknown tuning fork prong is loaded with a small piece of plasticine which diminishes 

the frequency a little and the two notes are sounded together. If the beat frequency increases, 

then f2 is greater than f1. If it decreases, then 
21

ff  . 

Examples 

1. A tuning fork of unknown frequency and a standard fork of 440Hz are sounded 

simultaneously and beats of frequency 4Hz are heard. What deduction can you make 

regarding the frequency of the unknown fork?  

fff 
21

 

Hence Hzfff 4444440
21

  or Hzfff 4364440
21

  

(ii) A small piece of wax is attached to the prongs of the unknown fork and in between forks 

are sounded again. It is found that the beat frequency is now 3Hz. What deduction can you 

make, explain your reason. 

Since the beat frequency decreases from 4Hz to 3Hz, this implies that  
21

ff   
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Hence Hzf 444
1
  

 

2.  Beats are produced by a plucked stretched wire and a resonance tube closed at one end 

each sounding at its fundamental note. The air column has a length of 0.168m the end 

correction being 0.012m. The wire has a vibrating length of 0.27m and is under tension of 

100N. The mass of the position of the wire is 4x10
-4

kg. 

     (i) Calculate the frequency of the beats heard. If velocity of sound in air column is  

350ms
-1

.  

 For the closed tube, cl 
1

4


 

    mcl 72.0012.0168.044
1

  

Hz
v

f 1.486
72.0

350

1



 

For the string, Hz
T

l
f 1.481

27.0

104

100

27.02

1

2

1

22














 







 

Beat frequency, Hzfff 51.4811.486
21

  

     (ii) Calculate the change in tension of the wire that would make the frequencies of the two 

notes the same.  

Using  f = 486.1Hz  

1.486

27.0

10425.02

1

1.486
2

1

4














 








T

Hz
T

l
f



 

Hence T = 102N 

Hence change in tension = 102 – 100 = 2N.  

Questions  

1.  Two tuning forks X and Y are sounded together to produce beats of frequency 8Hz. Fork 

X has a known frequency of 512Hz. When Y is loaded with a small plasticize beats at 

frequency of 2Hz are heard when the two tuning forks are sounded together.  
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  Calculate the frequency of Y when unloaded. ( 520Hz) 

 2.  The wire of a sonometer of mass per unit length 10
-3

kgm
-1

 is stretched on the two bridges 

by a load of 40N. When the wire is struck at the center point so that it executes its 

fundamental vibration, and at the same time a tuning fork of 264Hz is sounded and beats are 

heard and found to have a frequency of 3Hz. If the load is slightly increased, the beat 

frequency is lowered. Calculate the separation of the standing wave.(l = 0.375m) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                    Doppler’s effect.  

The pitch of the note from the siren (whistle) of a first traveling ambulance or train appears 

to a stationary observer to drop suddenly as 16 panes. This apparent change in the frequency 

of a wave motion when there is relative motion between the source and observer is called the 

Doppler Effect.  It occurs with electromagnetic waves and sound waves.  

 

Doppler Effect in sound waves.  

The following symbols will be used i.e, 

V = speed of sound in air 

us = speed of source, S 

uo = speed of observer, O 
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f  = frequency of sound waves.  

(a)Stationary source and observer.  

 

 

 

 

f waves emitted per second occupy a distance, V and hence the wave length 
f

V
  

b)  A stationary observer and a source moving towards the observer.  

 

 

 

 

 

 

f waves are compressed into a smaller distance V - us  per second  

 The apparent wave length 
f

uV
s


'  

 Apparent frequency, f1 = velocity of waves relative to O. 

                                         Apparent wave length, λ’. 

 Therefore, 
ss

uV

Vf

f

uV

V
f
















 


1
 ,  hence .

1
ff   

 If the source is moving with uniform speed, the pitch of the note is constant but higher than 

the true pitch.  

c)  Source moving away from a stationary observer 

 

 

 

 

 

• S • O 

V 

f waves 

• S • O 

V-us 

f waves 

us 

• 
S 

• O 

V+us 

f waves 

us 
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Apparent wave length, 
f

uV
s




2
  

The apparent frequency,  f2  = .

2 ss
uV

Vf

f

uV

VV
















 



 

                                 ff 
2

(i.e. observer hears a note of lower pitch than the true pitch).  

Apparent change in frequency heard by the observer as the source passes = f1 -  f2                                                                                            

22

2

s

s

ss uV

fVu

uV

Vf

uV

Vf









  

d) Observer moving to a stationary source. 

 

 

 

 

 

 

f waves occupy a distance V, since the source is stationary. The velocity of the wave relative 

to O is V + uo. Apparent frequency of the wave f1 = V + uo but 
f

V
   

 

 
 

.
1

V

fuV

f

V

uV
f

oo



















  

f1<f.  (Implying that pitch is higher than the true pitch).  

e) Observer moving away from a stationary source.  

 

 

 

 

 

• S • O 

V 

f waves 

uo 

• S • O 

V 

f waves 

uo 
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Apparent frequency, 
 

.
1

V

fuV

f

V

uV
f

oo



















  

                                       f2  <  f 

f) Source and Observer moving towards each other.  

 

 

 

 

 

f waves occupy a distance V-us. The wave length of the waves reaching O is 
f

uV
s


' . 

 The velocity of the relative to O is V + uo 

  Apparent frequency, 

f

uV

uVuV
f

s

oo









'
1


 

                                                   
s

o

uV

uVf
f






)(

1
 

g) Source and observer moving away from each other.  

 

 

 

Velocity of waves relative to O  = V - uo 

 Hence apparent frequency 
s

oo

uV

fuVuV
f









)(

'
2


 

In general, apparent frequency f1 is given by 

s

oo

uV

fuVuV
f



)(

'
1








 

Upper sign applies to approach.  

Lower sign applies to moving away from each other.  

 

• S • O 

V - uo 

f waves 

uo us 

• S • O 

V + uo 

f waves 

uo 
us 
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Application of Doppler Effect in Light.  

a)  Measurement of the speed of a star.  

Consider a star moving with a velocity us away from the earth and which emits light of wave 

length  . Let f be the frequency of the light. Let c be the velocity of light in vacuum. Owing 

to the motion of the star, the f waves emitted per second by the source occupy a distance 

equal to c + us 

The apparent wave length ' , to an observer on earth in line with the star’s motion is 

                     



 )1('
c

u

c

uc

f

uc
sss







  

 The shift in wave length is 
c

u
s


  '  

 Thus  '  is when star is moving away from the earth, i.e there is a shift towards the red 

end of the visible spectrum (RED SHIFT).  

Suppose the star is moving towards the earth with velocity, us the f waves occupy a distance 

(c - us)  

The apparent wave length ' , to an observer on earth in line with the star’s motion is  

                



 

















c

u

c

uc

f

uc
sss

1'  

                      
c

u
s


  '   

There is a shift towards the blue end of the visible spectrum (BLUE SHIFT). 

The Doppler shift can be used to measure the speed of a star. A photograph of the star is 

taken.  The spectral lines ( )'(  are compared with the corresponding lines )( obtained by 

photographing in the laboratory, an arc or spark spectrum of an element known to be present 

in the star. If '  is displaced towards the red end, the star is receding from the earth; if it is 

displaced towards the blue end, the star is approaching the earth.  

The speed of the star is us = .

1

c


 
 

 b) Measurement of plasma temperatures 
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At very high temperatures (~10
6
K) molecules of the glowing gas are moving away and 

towards the observer with  high speeds.  

Owing to the Doppler Effect, the wave length   of a particular spectral line is broadened. 

One edge of the line corresponds to an apparently decreased wave length 
1

  due to 

molecules moving towards the observer, and the other edge to an apparently increased wave 

length λ2 due to molecules moving directly away from the observer. The line is broadened by 

an amount 
c

u
s

2

12
 , Where us is the mean speed of the molecules.  

 The broadening   can be measured by a diffraction grating. Knowing   and c, us can be 

calculated. The mean square speed of the molecules of the gas is   =
2

1

3









M

RT
  where T is the 

absolute temperature, R is the molar gas constant and M is the molar mass.  

 The temperature T can be estimated by equating 
2

s
u  to 

M

RT3
 to yield T =

R

Mu
s

3

2

.  

Examples 

1.  A stationary observer notices the pitch of a police car changing the ratio of 4:3 when 

passing him. If the speed of sound is 350ms
-1

, calculate the speed of the car.  

 

s
uV

Vf
f




1
, 

s
uV

Vf
f




2
 

3

4

2

1


f

f
 

21
43 ff   

1
50

350

350
4

350

350
3










msu

u

f

u

f

s

ss  

2.  An observer moving between two identical sources of sound along the straight line joining 

them hears beats at the rate of 4s
-1

. At what velocity is he moving if the frequency of each 

source is 500Hz and the velocity of sound when he makes the observation is 340ms
-1. 

 

1
st
 source moving towards observer 

   

340

500340

1







oo
u

V

fuV
f  
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2nd source moving away from the observer 
   

340

500340

2







oo
u

V

fuV
f  

4
21
 ff

 

   
4

340

500340

340

500340






oo

uu
 

1
36.1


 msu

o
 

Questions 

1. Two observers A  and B are provided with sources of sound of frequency 500Hz. A 

remains stationary and B moves away from him at a velocity of 1.8ms
-1

. How many beats per 

second are observed by A and  by B, the velocity of sound being 330ms
-1

?  (2.73Hz) 

2.   

 

 

 

 

 

 

 

 

 

 

 

 

Interference of light waves.  

Conditions for observable interference 

 

 

 

 

 

 

• 

• 

Q 

X 

P 

A 

B 
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Suppose two light sources A and B have exactly the same frequency and amplitude of 

vibration and their vibrations are always in phase with each other. Such sources are called 

coherent sources. Coherent sources are those which emit light waves of the same wave length 

or frequency which are always in phase with each other or have a constant phase difference.  

Suppose X is equidistant from A and B, the vibration at X due to the two sources will always 

be in phase. The distance AX traveled by the wave originating at A is equal to the distance 

BX traveled by wave originating at B.  

Assume that waves from A and B are moving at X have the same amplitude, then the 

amplitude of the resultant wave at X is twice that of  either waves from A and B.  

The light energy at X is proportional to the square of the amplitude of resultant wave and 

hence is four times that due to A or B alone. A bright beam of light is therefore obtained at X 

as A and B are coherent sources. It is due to constructive interference of light waves at A and 

B at X i.e a crest from A reaches at the same time as a crest from B.  

 

Suppose Q is a point such that BQ AQ   by a whole number of wave lengths.  The waves are 

moving at Q from  A will be in phase as a wave moving at the same point from B, a bright 

band will be obtained at Q.  

Therefore condition for constructive interference to occur at any point Y as such that the path 

difference BY –AY   =m   where   is light wavelength from sources A and B and m is an 

integer.  

Consider a point P where distance from B is 2
1  a wave length longer than its distance from A  

 i.e. AP –BP =
2


  where  is a wave length of light from A and B 

Then the waves arriving at P from A will be out of phase with waves arriving at P from B.  If 

the waves have equal amplitudes, we obtain the following:- 
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The resultant at P is zero as the displacements at any instant are equal and opposite of each 

other. No light is therefore seen at P.  A dark band is obtained. Destructive interference is 

said to have occurred. 

In general, if P is such that the path difference AP – BP =  
2

1m    where m is an integer, 

destructive interference is said to have occurred at P.  

Optical path.  

Suppose light travels a distance X in a medium of refractive index  . If λ is the wave length 

of light in the medium, the quantity σ =


 x2
 is the phase difference due to the path.  

If the speed of light in the median is V then the refractive index of the median n =


c
  where        

  C = speed of light in vacuum.  V = speed of light in medium.  

   But c = f
o

   ,           V =λf 

Where o  and    are wave length in a vacuum and medium respectively.  

 







oo

f

f
n  ,         

n




   

           σ  = .
22

 





 nx

n

x
  

nx  is called the optical path. It is the product of the refractive index and the length light 

covers in the medium.  

Example  

 

 

 

Optical path    xdnxxdnx  1  

Phase difference on reflection 

 

 

 

d 

x 

Air  Air  

glass 
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Light waves may undergo a phase change by reflection at some point in their path. If the 

waves are reflected at a denser medium e.g at the air –glass interface, a phase change of    

radius compared to the incident waves occurs. This corresponds to a phase difference.  

               σ   =


2
             






2
  

  
2

   

Reflection occurs at the interface with a denser medium. No phase change in the less dense 

medium. Consider monochromatic light incident on a glass plate as shown.  

 

 

 

 

 

 

The optical path A to C is n (AB+BC).  

There is no phase change at B since reflection occurs at an interface with a less dense 

medium but there is a phase change of   radius equivalent to a path of .
2

   When XA is 

reflected along AD. Therefore the optical path difference between light reflected at A and 

that reflected at B is n (AB+ BC)   = .
2


 

How to produce two coherent sources.  

(i)   By division of wave front e.g Young’s double slit interference.  

 The wave front from S is divided at slits s1 and s2. Hence interference is occurring by 

division of wave fronts.  
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(ii) Division of amplitude. E.g air wedge.  

 

 

 

 

 

 

Here some of the light falling on the wedge is reflected upwards from the bottom surface of 

the top side i.e  at O and the rest which is transmitted through the air wedge is reflected 

upwards from the top surface of the bottom slide i.e at P so that the amplitude of the wave is 

divided into two  parts.  

  Young’s Double slit interference pattern. 

 

 

 

 

 

 

 

 

 

 

Monochromatic light from a narrow vertical slit S  falls on two other narrow slit S1 and S2.   

Which are very close together and parallel to S. S1 and S2 act as two coherent sources? 

Diffraction also takes place at S1 and S2. and interference occurs in the region where light 

from S1 overlaps that from S2. A series of alternate bright and bark equally spaced vertical 

bands (or fringes). Are observed on the screen.  

Separation of fringe.  

 

  
Qn.  What would be the effect of replacing monochromatic light with white light in 

Young’s double experiment?  
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          Using white light, fewer fringes are seen and each colour produces its own set of friges 

which overlap. Only the central frige is white, its position being the only one where the path 

difference is zero for all colours. The first coloured fringe is bluish near to the central fringe 

and red at the far end.  

 The fringe spacing for red is greater than blue light. Therefore red light must have a greater 

wave length than blue light since y  (If a and are constant). 
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